Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli
نویسندگان
چکیده
Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.
منابع مشابه
Evaluation of Antibiotic Resistance and Biofilm Formation Ability Uropathogenic E. coli (UPEC) Isolated From Pregnant Women in Karaj
Background and Objective: Uropathogenic Escherichia coli (UPEC) are the most common cause of urinary tract infections. The binding of these bacteria to epithelial cells and the formation of biofilms cause these bacteria to be further colonized and difficult to remove in the urinary tract. This study aimed to determine the antibiotic resistance and to evaluate the biofilm formation power in Esch...
متن کاملZinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli
Objective(s): This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. Materials and Methods: Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determin...
متن کاملImpact of Various Environmental and Growth Conditions on Antigen 43 Gene Expression and Biofilm Formation by Uropathogenic Echserchia coli
ABSTRACT Background and Objectives: Biofilm is a population of bacteria growing on a surface and enclosed in an exopolysaccharides matrix, which increases resistance to antimicrobial agents and immune response. Uropathogenic Escherichia coli (UPEC) are biofilm-forming bacteria and the most common cause of urinary tract infections (UTIs). This study ev...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملThe role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms.
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016